原子物理学

Charles

2024年6月26日

目录

目录

1	原子的位形: Rutherford 模型				
	1.1	原子质量与大小	4		
	1.2	Rutherford 模型	4		
		1.2.1 Coulomb 散射公式	4		
		1.2.2 Rutherford 散射公式	5		
	1.3	Rutherford 模型的应用	5		
•	Int →		0		
2	原于	*的重丁念: Bohr 模型	6		
	2.1	重于假况	6 C		
		2.1.1 黑体描射	0		
		2.1.2 光电效应	6		
	~ ~	2.1.3 光谱	6		
	2.2	Bohr 模型	6		
	2.3	Bohr 模型的计算	7		
	2.4	Bohr 模型的修止	7		
	2.5	Bohr-Sommerfeld 模型	8		
		2.5.1 量子化通则	8		
		2.5.2 椭圆轨道	8		
		2.5.3 椭圆轨道相对论修正	8		
3	量子	·力学导论	9		
	3.1	波粒二象性	9		
	3.2		9		
	3.3	Schrodinger 方程	9		
		3.3.1 Schrodinger 方程的建立	9		
		3.3.2 定态 Schrodinger 方程	10		
		3.3.3 Schrodinger 方程的应用	10		
	3.4	算符与力学量	12		
		3.4.1 算符与对易关系	12		
		3.4.2 力学量的期望值与表象	13		
		3.4.3 力学量与测量	13		
			10		
4	氢原	〔子与碱金属原子	14		
	4.1	氢原子	14		
		4.1.1 氢原子的定态 Schrodinger 方程	14		
		4.1.2 三个量子数的物理意义	14		
		4.1.3 电子概率密度分布	15		
		4.1.4 定态的宇称	15		
		4.1.5 跃迁的选择定则	15		
	4.2	碱金属原子	16		
	4.3	电子的自旋与磁矩	16		
		4.3.1 电子轨道的磁矩	16		
		4.3.2 Stern-Gerlach 实验	17		
		4.3.3 电子自旋的磁矩	17		

	4.4	碱金属原子光谱的精细结构 17
		4.4.1 原子的总角动量
		4.4.2 自旋-轨道相互作用
		4.4.3 碱金属原子光谱的精细结构
	4.5	氢原子光谱的精细结构
5	多电	20
	5.1	中心力场近似
	5.2	Pauli 不相容原理 20
	5.3	原子的壳层结构
	5.4	多电子原子能级的精细结构 21
		5.4.1 剩余非中心库仑相互作用和自旋一轨道相互作用
		5.4.2 <i>LS</i> 耦合
		5.4.3 <i>jj</i> 耦合
	5.5	多电子原子的光谱
		5.5.1 电偶极辐射跃迁的选择定则 23
		5.5.2 氦原子的光谱
	5.6	激光
		5.6.1 Einstein 辐射理论
		5.6.2 激光原理
	5.7	X射线
		5.7.1 X 射线的产生机制 28
		5.7.2 Compton 散射 25
		5.7.3 X 射线的吸收
6	磁场	中的原子 26
	6.1	原子的磁矩
		6.1.1 单电子原子的磁矩
		6.1.2 多电子原子的磁矩
	6.2	磁场对原子的作用
		6.2.1 Larmor 进动
		6.2.2 磁场中原子的附加能量
	6.3	原子光谱的 Zeeman 效应
		6.3.1 正常 Zeeman 效应
		6.3.2 反常 Zeeman 效应
		6.3.3 Paschen-Back 效应
	6.4	磁共振
	0.1	6.4.1 电子顺磁共振 (EPB)
		6.4.2 核磁共振 (NMR)
_	17	
7	原子	· 核物理概论 30
	7.1	県丁核的基本性质
		7.1.1 原于核的组成
		7.1.2 核目旋
		719 $t\tau_{\rm L}$ $t\tau_{\rm L}$ $t\tau_{\rm L}$ (NIAD) 91

附录		34
	7.3.3 核聚变	33
	7.3.2 核裂变	33
	7.3.1 核反应	33
7.3	核反应、核裂变与核聚变	33
	7.2.5 Mossbauer 效应	33
	7.2.4 γ 衰变	32
	7.2.3 β 衰变	32
	7.2.2 <i>α</i> 衰变	32
	7.2.1 核衰变的一般规律	32
7.2	核衰变	32
	7.1.4 原子的超精细结构	31

8 附录

1 原子的位形: Rutherford 模型

1.1 原子质量与大小

1. 质子质量与电子质量:

$$m_{\rm e} = 9.109 \times 10^{-31} \text{kg} = 0.511 \text{ MeV}/c^2$$
 (1.1)

$$m_{\rm p} = 1.673 \times 10^{-27} \text{kg} = 938.272 \text{ MeV}/c^2$$
 (1.2)

$$\Rightarrow m_{\rm p}/m_{\rm e} = 1836.153$$
 (1.3)

2. 原子的半径:

(1) 利用质量和密度:

$$\frac{4}{3}\pi r^3 N_A = \frac{m}{\rho} \Rightarrow r = \left(\frac{3m}{4\pi\rho N_A}\right)^{1/3} \tag{1.4}$$

(2) 利用 Van der Waals 方程:

$$b = \frac{1}{2} \cdot \frac{4}{3} \pi (2r)^3 \Rightarrow r = \left(\frac{3b}{16\pi N_A}\right)^{1/3}$$
(1.5)

1.2 Rutherford 模型

1.2.1 Coulomb 散射公式

1. Coulomb 散射公式:

$$b = \frac{a}{2}\cot\frac{\theta}{2}, \quad a = \frac{Z_1 Z_2 e^2}{4\pi\varepsilon_0 E}$$
 (1.6)

2. 质心系修正:

$$E_c = \frac{1}{2} \frac{mm'}{m+m'} v^2$$
 (1.7)

Proof. Newton 第二定律:

$$\frac{Z_1 Z_2 e^2}{4\pi\varepsilon_0 r^2} \boldsymbol{e}_r = m \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} \tag{1.8}$$

Coulomb 力是中心力,满足角动量守恒:

$$mvb = mr^2 \frac{\mathrm{d}\varphi}{\mathrm{d}t} = L \tag{1.9}$$

能量守恒:

$$\frac{1}{2}m|\boldsymbol{v}_i|^2 = \frac{1}{2}m|\boldsymbol{v}_f|^2 = E$$
(1.10)

$$\mathrm{d}\boldsymbol{v} = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{L} \boldsymbol{e}_r \mathrm{d}\boldsymbol{\varphi} \tag{1.11}$$

上式两边积分:

$$\int d\boldsymbol{v} = \boldsymbol{v}_f - \boldsymbol{v}_i = |\boldsymbol{v}_f - \boldsymbol{v}_i| \boldsymbol{e}_u = 2v \sin \frac{\theta}{2} \boldsymbol{e}_u$$
(1.12)

$$\int \boldsymbol{e}_r \mathrm{d}\varphi = \int_0^{\pi-\theta} (\boldsymbol{i}\cos\varphi + \boldsymbol{j}\sin\varphi)\mathrm{d}\varphi = 2\cos\frac{\theta}{2}\left(\boldsymbol{i}\sin\frac{\theta}{2} + \boldsymbol{j}\cos\frac{\theta}{2}\right) = 2\cos\frac{\theta}{2}\boldsymbol{e}_u \tag{1.13}$$

将上述结果代入式(1.11):

$$v\sin\frac{\theta}{2} = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{mvb} \cos\frac{\theta}{2}$$
(1.14)

因此,

$$b = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{mv^2} \cot\frac{\theta}{2} = \frac{a}{2} \cot\frac{\theta}{2}$$
(1.15)

1.2.2 Rutherford 散射公式

1. Rutherford 散射公式:

$$\sigma_c(\theta) = \left(\frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{4E}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}} = \frac{a^2}{16\sin^4 \frac{\theta}{2}}$$
(1.16)

2. 质心系修正:

$$E_c = \frac{1}{2} \frac{mm'}{m+m'} v^2 \tag{1.17}$$

3. 在实际使用时,必须转换到实验室坐标系:

$$\sigma_l(\theta_l) = \left(\frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{2E_l \sin^2 \theta_l}\right)^2 \frac{\left[\cos \theta_l + \sqrt{1 - \left(\frac{m_1}{m_2} \sin \theta_l\right)^2}\right]^2}{\sqrt{1 - \left(\frac{m_1}{m_2} \sin \theta_l\right)^2}}$$
(1.18)

Proof. 对于每一个靶核, 散射角大于 θ 的出射粒子都位于半径 $b(\theta)$ 的散射截面内:

$$\sigma(\theta) = \pi b^2(\theta) = \frac{\pi a^2}{4} \cot^2 \theta \tag{1.19}$$

粒子打到 $b \sim b + db$ 之间的环上,即散射角为 $\theta - d\theta \sim \theta$ 之间的概率为

$$dp(\theta) = \frac{|d\sigma(\theta)|}{S} = \frac{2\pi b \cdot |db|}{S} = \frac{2\pi}{S} \cdot \frac{a}{2} \cot \frac{\theta}{2} \left| -\frac{a}{2} \csc^2 \frac{\theta}{2} \cdot \frac{1}{2} d\theta \right| = \frac{a^2 2\pi \sin \theta d\theta}{16S \sin^4 \frac{\theta}{2}}$$
(1.20)

这一空心圆锥的立体角与 dθ 有如下关系:

$$d\Omega = \frac{2\pi r \sin \theta \cdot r d\theta}{r^2} = 2\pi \sin \theta d\theta \qquad (1.21)$$

代入式(1.20)得

$$dp(\theta) = \frac{a^2 d\Omega}{16S \sin^4 \frac{\theta}{2}}$$
(1.22)

粒子打到整个薄箔上散射角为 $\theta \sim \theta - d\theta$ 之间(即 d Ω 方向)的概率:

$$\frac{\mathrm{d}N}{N} = \mathrm{d}p(\theta) \cdot nSd = \frac{a^2 \mathrm{d}\Omega}{16\sin^4\frac{\theta}{2}} nd = \left(\frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{4E}\right)^2 \frac{\mathrm{d}\Omega}{\sin^4\frac{\theta}{2}} nd \tag{1.23}$$

其中, n 是薄箔上的原子核体密度, d 是薄箔的厚度。

定义微分截面:

$$\sigma_c(\theta) = \frac{\mathrm{d}\sigma(\theta)}{\mathrm{d}\Omega} = \frac{\mathrm{d}N}{Nnd\mathrm{d}\Omega} = \left(\frac{1}{4\pi\varepsilon_0}\frac{Z_1Z_2e^2}{4E}\right)^2 \frac{1}{\sin^4\frac{\theta}{2}} \tag{1.24}$$

表示对于单位体积内的每个靶核,单位入射粒子、单位立体角内的散射粒子数。单位是 b/sr。 🛛

Remark. 关注以下情况:

- 当 θ 很小时,式(1.20)表明接收的出射粒子数 dN 可能大于入射粒子数 N,不符合实际。
- 小角,相当于大碰撞参量,此时无法忽略核外电子作用。当 b 达到原子尺度时, Coulomb 散射不发生。 • 当 θ 在 180°附近偏差不到 1°时,实验测得散射截面远大于计算数值。此原因请查阅文献。

1.3 Rutherford 模型的应用

1. 入射粒子与靶核对心相碰:

$$E_c = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{r_m} \tag{1.25}$$

2. 最小距离:

$$r_m = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{E_c} = a \tag{1.26}$$

Remark. 当 E_c 越大, r_m 越小。因此, 实际原子核半径总是小于实验得到的 r_m 。

2 原子的量子态: Bohr 模型

2.1 量子假说

2.1.1 黑体辐射

1. Stefan-boltzmann 定律:

$$R(T) = \sigma T^4, \quad \sigma = 5.67 \times 10^{-8} \mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mathrm{K}^{-4}$$
 (2.1)

2. Wien 位移定律:

$$\lambda_m T = b, \quad b = 2.897 \times 10^{-3} \mathrm{m \cdot K}$$
 (2.2)

3. 黑体辐射本领与辐射能量密度的关系:

$$R(\nu, T) = \frac{c}{4}E(\nu, T)$$
(2.3)

4. 黑体辐射本领的转换关系:

$$R(\lambda, T) = \frac{c}{\lambda^2} R(\nu = \frac{c}{\lambda}, T)$$
(2.4)

- 5. 黑体辐射能谱曲线:
 - (1) Wien 公式: 短波符合

$$E(\nu, T) d\nu = C_1 \nu^3 e^{-C_2 \nu/T} d\nu$$
(2.5)

(2) Rayleigh-Kings 公式:长波符合

$$E(\nu,T)\mathrm{d}\nu = \frac{8\pi}{c^3}kT\nu^2\mathrm{d}\nu \tag{2.6}$$

(3) Planck 公式:

$$E(\nu,T)d\nu = \frac{8\pi h\nu^3}{c^3} \frac{d\nu}{e^{h\nu/kT} - 1}$$
(2.7)

2.1.2 光电效应

1. Einstein 光电效应方程:

$$h\nu = W + \frac{1}{2}mv_m^2 \tag{2.8}$$

$$eU = \frac{1}{2}mv_m^2 \tag{2.9}$$

2.1.3 光谱

1. Rydberg 方程:

$$\tilde{\nu} = \frac{1}{\lambda} = R\left(\frac{1}{n^2} - \frac{1}{{n'}^2}\right) = T(n) - T(n')$$
(2.10)

2.2 Bohr 模型

- 1. Bohr 模型:
 - (1) 定态条件:在氢原子中,电子只能处于一些分立的轨道上绕核转动,且不产生电磁辐射。
 - (2) 频率条件:

$$h\nu_{nn'} = E_{n'} - E_n \tag{2.11}$$

(3) 角动量量子化:

$$L = m_e v r = n\hbar \tag{2.12}$$

2. Coulomb 力充当向心力:

$$\frac{1}{4\pi\varepsilon_0}\frac{e^2}{r^2} = m_e \frac{v^2}{r} \tag{2.13}$$

- 2 原子的量子态: BOHR 模型
- 3. Bohr 半径:

$$r_n = n^2 \left(\frac{4\pi\varepsilon_0 \hbar^2}{m_e e^2}\right) = n^2 r_1 \tag{2.14}$$

4. Bohr 能量:

$$E_n = \frac{1}{2}m_e v^2 - \frac{1}{4\pi\varepsilon_0}\frac{e^2}{r_n} = -\frac{1}{8\pi\varepsilon_0}\frac{e^2}{r_n} = -\frac{1}{2}m_e c^2 \left(\frac{e^2}{4\pi\varepsilon_0\hbar c}\right)^2 \cdot \frac{1}{n^2} = \frac{E_1}{n^2}$$
(2.15)

5. Rydberg 方程:

$$\widetilde{\nu}_{nn'} = \frac{1}{\lambda_{nn'}} = \frac{\nu_{nn'}}{c} = \frac{1}{hc} (E_{n'} - E_n) = -\frac{E_1}{hc} \left(\frac{1}{n^2} - \frac{1}{{n'}^2} \right) = R \left(\frac{1}{n^2} - \frac{1}{{n'}^2} \right)$$
(2.16)

2.3 Bohr 模型的计算

1. 精细结构常数:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} = \frac{1}{137} \tag{2.17}$$

2. Bohr 第一半径:

$$a = r_1 = \frac{\hbar}{\alpha m_e c} = 0.053 \text{ nm}$$
 (2.18)

3. Bohr 第一速度:

$$v_1 = \alpha c = \frac{c}{137} \tag{2.19}$$

4. 氢原子基态能量:

$$E_1 = -\frac{1}{2}m_e(\alpha c)^2 = -13.6 \text{ eV}$$
(2.20)

5. Rydberg 常数:

$$R = -\frac{E_1}{hc} = 1.097 \times 10^7 \text{ m}^{-1}$$
(2.21)

2.4 Bohr 模型的修正

1. 氢光谱:两体修正

$$R_A = \frac{2\pi^2 e^4}{(4\pi\varepsilon_0)^2 \cdot ch^3} \frac{m_A m_e}{m_A + m_e} = \frac{2\pi^2 e^4}{(4\pi\varepsilon_0)^2 \cdot ch^3} m_e \frac{1}{1 + \frac{m_e}{m_A}} = R \frac{1}{1 + \frac{m_e}{m_A}}$$
(2.22)

2. 类氢光谱:在原有公式中出现 e² 时乘以 Z

$$r_n = \frac{n^2}{Z} r_1 \tag{2.23}$$

$$E_n = \left(\frac{Z}{n}\right)^2 E_1 \tag{2.24}$$

$$\left(\frac{1}{\lambda}\right)_{A} = R_{A}\left(\frac{1}{n^{2}} - \frac{1}{n^{\prime 2}}\right)Z^{2} = R_{A}\left[\frac{1}{(n/Z)^{2}} - \frac{1}{(n^{\prime}/Z)^{2}}\right]$$
(2.25)

- 3. 相对论修正:
 - (1) 电子的动能:

$$T_n = (m - m_0)c^2, \quad m = \frac{m_0}{\sqrt{1 - \beta^2}}, \quad \beta = \frac{\alpha Z}{n}$$
 (2.26)

(2) 电子的势能:

$$V_n = -\frac{Ze^2}{4\pi\varepsilon_0 r_n} = -\frac{Z^2}{n^2} \cdot \frac{e^4}{(4\pi\varepsilon_0)^2\hbar^2 c^2} mc^2 = -\frac{Z^2}{n^2} \cdot \alpha^2 \cdot mc^2 = -\beta^2 mc^2$$
(2.27)

(3) 电子的能量:

$$E_n = T_n + V_n = mc^2 \left(1 - \beta^2\right) - m_0 c^2 = m_0 c^2 \left(\sqrt{1 - \beta^2} - 1\right)$$
$$\approx -m_0 c^2 \left(\frac{1}{2}\beta^2 + \frac{1}{8}\beta^4\right) = -\frac{m_0 c^2}{2} \left(\frac{Z\alpha}{n}\right)^2 \left[1 + \frac{1}{4} \left(\frac{Z\alpha}{n}\right)^2\right]$$
(2.28)

2.5 Bohr-Sommerfeld 模型

2.5.1 量子化通则

$$\oint p_q \mathrm{d}q = n_q h \tag{2.29}$$

2.5.2 椭圆轨道

1. 在极坐标 (r, φ) 中描述椭圆轨道中电子的运动:

$$L = mr^2 \dot{\varphi}, \quad p = m\dot{r} \tag{2.30}$$

2. 体系的能量可表示为:

$$E = \frac{1}{2}mv^2 - \frac{Ze^2}{r} = \frac{1}{2}(\dot{r}^2 + r^2\dot{\varphi}^2) - \frac{Ze^2}{r}$$
(2.31)

3. 满足以下两个量子化条件:

$$\oint L \mathrm{d}\varphi = n_{\varphi}h, \quad \oint p \mathrm{d}r = n_r h \tag{2.32}$$

其中, n_{φ} 和 n_r 都是整数, 分别称为角量子数和径量子数。 $n = n_{\varphi} + n_r$ 是主量子数。 4. 从上述式子出发, Sommerfeld 得出了以下结论:

$$\begin{cases} a = \frac{n^2 \hbar^2}{\mu Z e^2} = n^2 \frac{a_1}{Z} \\ b = a \frac{n_{\varphi}}{n} = n n_{\varphi} \frac{a_1}{Z} \\ E = -\frac{1}{2} m_e (\alpha c)^2 \frac{Z^2}{n^2} \end{cases}$$
(2.33)

2.5.3 椭圆轨道相对论修正

1. 考虑了椭圆轨道的相对论效应后, Sommerfeld 得到的能量表达式为:

$$E = -m_0 c^2 + m_0 c^2 \left[1 + \frac{Z^2 \alpha^2}{n_r + (n_{\varphi}^2 - Z^2 \alpha^2)^{1/2}} \right]^{-1/2}$$

$$\approx -\frac{1}{2} m_0 (\alpha c)^2 \frac{Z^2}{n^2} \left[1 + \left(\frac{Z\alpha}{n}\right)^2 \left(\frac{n_{\varphi}}{n} - \frac{3}{4}\right) \right]$$
(2.34)

2. 光谱项 $T(n, n_{\varphi})$ 的表达式为:

$$T(n, n_{\varphi}) = -\frac{E}{hc} = \frac{RZ^2}{n^2} + \frac{RZ^4 \alpha^2}{n^4} \left(\frac{n_{\varphi}}{n} - \frac{3}{4}\right)$$
(2.35)

3.1 波粒二象性

3. de Broglie 波长:

1. 光子能量:

2. 光子动量:

$$E = h\nu = \hbar\omega \tag{3.1}$$

$$p = \frac{h}{\lambda} = \hbar k \tag{3.2}$$

$$\lambda = \frac{h}{p} \tag{3.3}$$

$$\Delta x \Delta p_x \ge \frac{\hbar}{2}, \quad \Delta E \Delta t \ge \frac{\hbar}{2}$$
(3.4)

3.2 波函数

4. 不确定关系:

1. 波函数:

$$\psi(\boldsymbol{r},t) = \psi_0 \mathrm{e}^{\mathrm{i}(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)} \tag{3.5}$$

2. 统计诠释:

$$P = |\psi(\boldsymbol{r}, t)|^2 \mathrm{d}\tau \tag{3.6}$$

3. 归一化条件:

$$\int_{-\infty}^{+\infty} |\psi(\boldsymbol{r},t)|^2 \mathrm{d}\tau = 1$$
(3.7)

3.3 Schrodinger 方程

3.3.1 Schrodinger 方程的建立

1. 电磁波的波动方程:

$$\nabla^2 \psi(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \psi(\mathbf{r}, t) = 0$$
(3.8)

$$\left(\hat{E}^2 - c^2\hat{p}\right)\psi(\boldsymbol{r}, t) = 0 \tag{3.9}$$

相对论 Schrodinger 方程:
 (1) Klein-Gordon 方程:

$$E^2 = p^2 c^2 + m_0^2 c^4 aga{3.10}$$

$$\nabla^2 \psi(\boldsymbol{r}, t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \psi(\boldsymbol{r}, t) - \frac{m_0^2 c^2}{\hbar^2} = 0$$
(3.11)

(2) Dirac 方程:

$$E = \alpha c p + \beta m_0 c^2 \tag{3.12}$$

$$i\hbar \frac{\partial}{\partial t}\psi(\boldsymbol{r},t) = \left(-i\hbar c\alpha \cdot \nabla + \beta m_0 c^2\right)\psi(\boldsymbol{r},t)$$
(3.13)

3. 非相对论 Schrodinger 方程:

$$E = \frac{p^2}{2m} + V \tag{3.14}$$

- $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x,t)\right]\psi(x,t) = i\hbar\frac{\partial}{\partial t}\psi(x,t)$ (3.15)
- (2) 三维 Schrodinger 方程:

(1) 一维 Schrodinger 方程:

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\boldsymbol{r},t)\right]\psi(\boldsymbol{r},t) = \mathrm{i}\hbar\frac{\partial}{\partial t}\psi(\boldsymbol{r},t)$$
(3.16)

3.3.2 定态 Schrodinger 方程

1. 势场 $V(\mathbf{r})$ 不显含时间 t, Schrodinger 方程变为:

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\boldsymbol{r})\right]\psi(\boldsymbol{r},t) = \mathrm{i}\hbar\frac{\partial}{\partial t}\psi(\boldsymbol{r},t)$$
(3.17)

2. 分离变量:

$$\psi(\mathbf{r},t) = \psi(\mathbf{r})T(t) \tag{3.18}$$

$$\frac{\mathrm{i}\hbar}{T}\frac{\mathrm{d}T}{\mathrm{d}t} = \frac{1}{\psi}\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\boldsymbol{r})\right]\psi = E$$
(3.19)

3. 时间部分:

$$T(t) = T_0 \mathrm{e}^{-\mathrm{i}Et/\hbar} \tag{3.20}$$

4. 定态波函数:

$$\psi(\mathbf{r},t) = \psi(\mathbf{r}) \mathrm{e}^{-\mathrm{i}Et/\hbar} \tag{3.21}$$

5. 定态 Schrodinger 方程:

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\boldsymbol{r})\right]\psi(\boldsymbol{r}) = E\psi(\boldsymbol{r})$$
(3.22)

3.3.3 Schrodinger 方程的应用

1. 一维无限深方势阱:

$$V(x) = \begin{cases} 0 & 0 \leqslant x \leqslant a \\ \infty & others. \end{cases}$$
(3.23)

(1) Schrodinger 方程:

$$\frac{d^2\psi}{dx^2} + k^2\psi = 0, \quad k^2 = \frac{2mE}{\hbar^2}$$
(3.24)

$$\psi(x) = A\sin kx + B\cos kx \tag{3.25}$$

(2) 边界条件:

$$B = 0, \quad ka = n\pi, \quad n = 1, 2, \dots$$
(3.26)

(3) 波函数:

(4) 能量:

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a} \tag{3.27}$$

$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$
(3.28)

2. 一维有限深方势阱: 束缚态 *E* < *V*₀

$$V(x) = \begin{cases} 0 & -a \leqslant x \leqslant a \\ V_0 & others. \end{cases}$$
(3.29)

(1) 当 $|x| \leq a$ 时,

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + k^2\psi = 0, \quad k^2 = \frac{2mE}{\hbar^2}$$
(3.30)

$$\psi(x) = A\sin kx + B\cos kx \tag{3.31}$$

 $(2) \ \underline{} \ |x| \ge a \ \underline{} \ \mathrm{bt},$

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} - k'^2\psi = 0, \quad k'^2 = \frac{2m(V_0 - E)}{\hbar^2}$$
(3.32)

$$\psi(x) = \begin{cases} C e^{k'x} & x < -a \\ D e^{-k'x} & x > a \end{cases}$$
(3.33)

(3) 势是偶函数, 仅讨论偶函数解:

$$\psi(x) = \begin{cases} De^{-k'x} & x > a \\ B\cos kx & 0 < x \le a \\ \psi(-x) & x < 0 \end{cases}$$
(3.34)

(4) 边界条件:

$$De^{-k'a} = B\cos ka, \quad -k'De^{-k'a} = -kB\sin ka$$
 (3.35)

$$k' = k \tan ka \tag{3.36}$$

3. 方势垒的隧道效应:

$$V(x) = \begin{cases} 0 & x < 0, \ x > a \\ V_0 & 0 \leqslant x \leqslant a \end{cases}$$
(3.37)

(1) 当 x < 0 时,

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + k_1^2\psi = 0, \quad k_1^2 = \frac{2mE}{\hbar^2}$$
(3.38)

$$\psi_1(x) = A e^{ik_1 x} + B e^{-ik_1 x}$$
(3.39)

(2) 当 0 < x < a 时,

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} - k_2^2\psi = 0, \quad k_2^2 = \frac{2m(V-E)}{\hbar^2}$$
(3.40)

$$\psi_2(x) = C e^{k_2 x} + D e^{-k_2 x} \tag{3.41}$$

(3) 当 x > a 时,没有入射波 $\Rightarrow G = 0$

$$\psi_3(x) = F e^{ik_1 x} + G e^{-ik_1 x}$$
(3.42)

(4) 透射概率:

$$T = \frac{|F|^2}{|A|^2} = \frac{16k_1^2k_2^2}{(k_1^2 + k_2^2)^2(e^{-k_2a} - e^{k_2a})^2 + 16k_1^1k_2^2}$$
(3.43)

(5) 反射概率:

$$R = \frac{|B|^2}{|A|^2} = \frac{(k_1^2 + k_2^2)^2 (e^{-k_2 a} - e^{k_2 a})^2}{(k_1^2 + k_2^2)^2 (e^{-k_2 a} - e^{k_2 a})^2 + 16k_1^2 k_2^2}$$
(3.44)

4. 一维谐振子势阱:

$$V(x) = \frac{1}{2}m\omega^2 x^2 \tag{3.45}$$

(1) 产生湮灭算符:

$$\hat{a}_{\pm} = \frac{1}{\sqrt{2\hbar m\omega}} (\mp i\hat{p} + m\omega x) \tag{3.46}$$

$$\hat{a}_{-}\hat{a}_{+} = \frac{1}{\hbar\omega}\hat{H} + \frac{1}{2}$$
(3.47)

$$\hat{a}_{+}\psi_{n} = \sqrt{n+1}\psi_{n+1}, \quad \hat{a}_{-}\psi_{n} = \sqrt{n}\psi_{n-1}$$
(3.48)

(2) Schrodinger 方程:

$$\hbar\omega \left(\hat{a}_{\pm}\hat{a}_{\mp} \pm \frac{1}{2}\right)\psi = E\psi \tag{3.49}$$

(3) 波函数:

$$\psi_n(x) = \frac{1}{\sqrt{n!}} \left(\hat{a}_+\right)^n \psi_0(x) = \frac{1}{\sqrt{n!}} \left(\hat{a}_+\right)^n \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2}$$
(3.50)

(4) 能量:

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \quad n = 0, 1, 2, \dots$$
(3.51)

3.4 算符与力学量

3.4.1 算符与对易关系

- 1. 算符:
 - (1) Hamilton 算符:

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V \tag{3.52}$$

(2) 动量算符:

$$\hat{p} = -i\hbar\nabla \tag{3.53}$$

 $\hat{E} = i\hbar \frac{\partial}{\partial t} \tag{3.54}$

(4) 轨道角动量算符:

$$\hat{L}_x = y\hat{p}_z - z\hat{p}_y, \quad \hat{L}_y = z\hat{p}_x - x\hat{p}_z, \quad \hat{L}_z = x\hat{p}_y - y\hat{p}_x \tag{3.55}$$

$$\hat{L}_x = -i\hbar \left(-\sin\varphi \frac{\partial}{\partial\theta} - \cos\varphi \cot\theta \frac{\partial}{\partial\varphi} \right)$$
(3.56)

$$\hat{L}_{y} = -i\hbar \left(+\cos\varphi \frac{\partial}{\partial\theta} - \sin\varphi \cot\theta \frac{\partial}{\partial\varphi} \right)$$
(3.57)

$$\hat{L}_z = -\mathrm{i}\hbar \frac{\partial}{\partial\varphi} \tag{3.58}$$

$$\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right]$$
(3.59)

$$\hat{L}_{\pm} = \hat{L}_x \pm \mathrm{i}\hat{L}_y \tag{3.60}$$

- 2. 正则对易关系:
 - (1) 坐标与动量的对易关系:

$$[\hat{x}_{\alpha}, \hat{p}_{\beta}] = \mathrm{i}\hbar\delta_{\alpha\beta} \tag{3.61}$$

(3.62)

- (2) 坐标与角动量的对易关系:
- (3) 动量与角动量的对易关系:

$$\left[\hat{p}_{\alpha}, \hat{L}_{\beta}\right] = \varepsilon_{\alpha\beta\gamma} \mathrm{i}\hbar\hat{p}_{\gamma} \tag{3.63}$$

(4) 角动量算符的对易关系:

$$\left[\hat{L}_{\alpha},\hat{L}_{\beta}\right] = \varepsilon_{\alpha\beta\gamma} \mathrm{i}\hbar\hat{L}_{\gamma} \tag{3.64}$$

$$\left[\hat{L}^2, \hat{L}\right] = 0 \tag{3.65}$$

$$\left[\hat{L}_z, \hat{L}_\pm\right] = \pm \hbar \hat{L}_\pm \tag{3.66}$$

$$\left[\hat{L}^2, L_{\pm}\right] = 0 \tag{3.67}$$

3. 本征方程:

$$\hat{O}f_n = \lambda_n f_n \tag{3.68}$$

一个本征值对应于 n 个本征函数,称这一本征函数是 n 度简并的。

 $\left[\hat{x}_{\alpha}, \hat{L}_{\beta}\right] = \varepsilon_{\alpha\beta\gamma} \mathrm{i}\hbar\hat{x}_{\gamma}$

3.4.2 力学量的期望值与表象

1. 力学量的期望值:

$$\langle Q(\boldsymbol{r}, \boldsymbol{p}) \rangle = \int \psi(\boldsymbol{r})^* \hat{Q}(\boldsymbol{r}, -\mathrm{i}\hbar\nabla) \psi(\boldsymbol{r}) \mathrm{d}\tau$$
 (3.69)

2. 动量空间和位置空间波函数的变换:

$$\psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \phi(p_x) \mathrm{e}^{\mathrm{i}p_x x/\hbar} \mathrm{d}p_x$$
(3.70)

$$\phi(p_x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \psi(x) \mathrm{e}^{\mathrm{i}p_x x/\hbar} \mathrm{d}x$$
(3.71)

3.4.3 力学量与测量

1. Hermite 算符:

$$\int \psi^* \left(\hat{A} \phi \right) d\tau = \int \left(\hat{A} \psi \right)^* \phi d\tau$$
(3.72)

(1) 本征值为实数:

$$\lambda_n^* = \lambda_n \tag{3.73}$$

(2) 不同本征值的本征函数具有正交归一性:

$$\int \psi_n^* \psi_m \mathrm{d}\tau = \delta_{nm} \tag{3.74}$$

- 2. 广义统计诠释:
 - (1) 波函数展开为力学量本征函数的线性组合:

$$\psi(x) = \sum_{n} c_n \phi_n(x), \quad c_n = \int \phi_n^*(x) \psi(x) \mathrm{d}x \tag{3.75}$$

(2) 观测到 λ_n 的概率为 $|c_n|^2$:

$$\langle Q \rangle = \int \psi^*(x) \hat{Q} \psi(x) \mathrm{d}x = \sum_{nm} c_m^* c_n \int \phi_n^*(x) \hat{Q} \phi_m(x) \mathrm{d}x = \sum_{nm} c_n^* c_m \lambda_n \delta_{nm} = \sum_n |c_n|^2 \lambda_n \quad (3.76)$$

3. 不同物理量同时有确定值的条件:有共同的本征函数且构成完全系。

$$\hat{A}\phi_n = \lambda_n \phi_n, \quad \hat{B}\phi_n = \mu_n \phi_n$$

$$(3.77)$$

$$\left(\hat{A}\hat{B} - \hat{B}\hat{A}\right)\phi_n = (\lambda_n\mu_n - \mu_n\lambda_n)\phi_n = 0$$
(3.78)

$$\left(\hat{A}\hat{B}-\hat{B}\hat{A}\right)\psi = \left(\hat{A}\hat{B}-\hat{B}\hat{A}\right)\sum_{n}c_{n}\psi_{n} = \sum_{n}c_{n}(\lambda_{n}\mu_{n}-\mu_{n}\lambda_{n})\phi_{n} = 0$$
(3.79)

4. 守恒量:物理量的算符不显含时间,并且与 Hamilton 算符对易。

$$\frac{\mathrm{d}}{\mathrm{d}t}\left\langle \hat{Q}\right\rangle = \left\langle \frac{\partial \hat{Q}}{\partial t}\right\rangle + \frac{1}{\mathrm{i}\hbar}\left\langle \left[\hat{Q},\hat{H}\right]\right\rangle = 0 \tag{3.80}$$

4 氢原子与碱金属原子

4.1 氢原子

4.1.1 氢原子的定态 Schrodinger 方程

1. 定态 Schrodinger 方程:

$$-\frac{\hbar^2}{2\mu}\nabla^2\psi(r,\theta,\varphi) - \frac{e^2}{4\pi\varepsilon_0 r}\psi(r,\theta,\varphi) = E\psi(r,\theta,\varphi)$$
(4.1)

2. Laplace 算子:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}$$
(4.2)

3. 分离变量:

$$\psi(r,\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi)$$
(4.3)

$$\frac{\sin^2\theta}{R}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \frac{\sin\theta}{\Theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\right) + \frac{2\mu r^2}{\hbar^2}\sin^2\theta\left(E + \frac{e^2}{4\pi\varepsilon_0 r}\right) = -\frac{1}{\Phi}\frac{\mathrm{d}^2\Phi}{\mathrm{d}\varphi^2} = m^2 \tag{4.4}$$

$$\frac{1}{R}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^{2}\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \frac{2\mu r^{2}}{\hbar^{2}}\left(E + \frac{e^{2}}{4\pi\varepsilon_{0}r}\right) = \frac{m^{2}}{\sin^{2}\theta} - \frac{1}{\Theta\sin\theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\right) = l(l+1)$$
(4.5)

4. 方位角部分:

$$\frac{\mathrm{d}^2\Phi}{\mathrm{d}\varphi^2} + m^2\Phi = 0 \tag{4.6}$$

$$\Phi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}, \quad m = 0, \pm 1, \pm 2, \dots, \pm l$$
(4.7)

5. 极角部分:

$$\frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}}{\mathrm{d}\theta} \right) \Theta + \left[l(l+1) - \frac{m^2}{\sin^2\theta} \right] \Theta = 0$$
(4.8)

$$\Theta_{lm}(\theta) = AP_l^m(\cos\theta), \quad l = 0, 1, 2..., n-1$$
(4.9)

6. 径向部分:

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{2}{r}\frac{\mathrm{d}}{\mathrm{d}r}\right)R + \left[\frac{2\mu}{\hbar^2}\left(E + \frac{e^2}{4\pi\varepsilon_0 r}\right) - \frac{l(l+1)}{r^2}\right]R = 0$$
(4.10)

$$R_{nl} = N_{nl} e^{-Zr/na} \left(\frac{2Zr}{na}\right)^l L_{n+1}^{2l+1} \left(\frac{2Zr}{na}\right), \quad N_{nl} = -\sqrt{\left(\frac{2Z}{na}\right)^3 \frac{(n-l-1)!}{2n[(n+1)!]^3}}$$
(4.11)

7. 波函数:

$$\psi_{nlm}(r,\theta,\varphi) = R_{nl}(r)\Theta_{lm}(\theta)\Phi_m(\varphi) = R_{nl}(r)Y_l^m(\theta,\varphi)$$
(4.12)

$$\psi_{100}(r,\theta,\varphi) = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$$
 (4.13)

4.1.2 三个量子数的物理意义

- 1. 主量子数 n 和能级:
 - (1) \hat{H} 的本征方程:

$$\hat{H}\psi_{nlm}(r,\theta,\varphi) = E_n\psi(r,\theta,\varphi)$$
(4.14)

(2) 能级:

$$E_n = -\left[\frac{\mu}{2\hbar^2} \left(\frac{Ze^2}{4\pi\varepsilon_0}\right)^2\right] \frac{1}{n^2} = -\frac{Rhc}{n^2} = \frac{E_1}{n^2}, \quad n = 1, 2, \dots$$
(4.15)

(3) 能级的简并度:

$$N(n,l,m) = \sum_{l=0}^{n-1} (2l+1) = \frac{n(1+2n-1)}{2} = n^2$$
(4.16)

- 4 氢原子与碱金属原子
- 2. 角量子数 *l* 和轨道角动量:
 - (1) *L*² 的本征方程:

$$\hat{L}^2 Y_l^m(\theta,\varphi) = l(l+1)\hbar^2 Y_l^m(\theta,\varphi)$$
(4.17)

(2) 轨道角动量的大小:

$$L = \sqrt{l(l+1)}\hbar, \quad l = 0, 1, 2, \dots, n-1$$
(4.18)

3. 磁量子数 m 和轨道角动量空间取向:
 (1) L_z 的本征方程:

$$\hat{L}_z Y_l^m(\theta, \varphi) = m\hbar Y_l^m(\theta, \varphi)$$
(4.19)

(2) 轨道角动量 z 分量的大小:

$$L_z = m\hbar, \quad m = 0, \pm 1, \pm 2, \dots, \pm l$$
 (4.20)

4.1.3 电子概率密度分布

1. 空间概率分布:

$$|\psi_{nlm}(r,\theta,\varphi)^2|d\tau = |R_{nl}(r)|^2 |Y_l^m(\theta,\varphi)|^2 r^2 \sin\theta dr d\theta d\varphi$$
(4.21)

2. 角向概率分布:

$$P_{lm}(\theta,\varphi)\mathrm{d}\Omega = \int_0^{+\infty} |R_{nl}(r)|^2 r^2 \mathrm{d}r |Y_l^m(\theta,\varphi)| \sin\theta \mathrm{d}\theta \mathrm{d}\varphi = |Y_l^m(\theta,\varphi)|^2 \mathrm{d}\Omega$$
(4.22)

3. 径向概率分布:

$$P_{nl}(r)dr = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} |Y_{l}^{m}(\theta,\varphi)|^{2} \sin\theta d\theta |R_{nl}(r)|^{2} r^{2} dr = R_{nl}^{2}(r) r^{2} dr$$
(4.23)

 $P_{nl}(r)$ 有n-l个极大值点,n-l-1个极小值点。主峰位置随l增加向原子核移近。l值越小,最内层的峰离核越近,说明对同一n值,随着l的减小,电子出现在原子核附近的概率逐渐增大。

4. 电子径向坐标的平均值:

$$\langle r \rangle = \frac{1}{2} [3n^2 - l(l+1)] \frac{a}{Z}$$
 (4.24)

$$\langle r^2 \rangle = \frac{1}{2} [5n^2 + 1 - l(l+1)] n^2 \left(\frac{a}{Z}\right)^2$$
(4.25)

4.1.4 定态的宇称

1. 空间反演算符:

$$\hat{P}\psi_{nlm}(r,\theta,\varphi) = \psi_{nlm}(r,\pi-\theta,\varphi+\pi)$$
(4.26)

2. 氢原子定态的宇称取决于 l:

$$Y_l^m(\pi - \theta, \varphi + \pi) = (-1)^l Y_l^m(\theta, \varphi)$$
(4.27)

$$\hat{P}\psi_{nlm}(r,\theta,\varphi) = (-1)^l \psi_{nlm}(r,\theta,\varphi)$$
(4.28)

4.1.5 跃迁的选择定则

1. 感生偶极矩算符:

$$\hat{D} = -er \tag{4.29}$$

2. 电偶极跃迁矩阵元:

$$D_{nn'} = \int_{-\infty}^{+\infty} \psi_n^*(r) \hat{D} \psi_{n'}(r) d\tau$$
(4.30)

在 $\psi_n(r)$ 和 $\psi_{n'}(r)$ 间发生跃迁的概率正比于 $|D_{nn'}|^2$ 。

3. 发生电偶极辐射跃迁的条件:

$$\langle er_{ij} \rangle = e \langle j | r | i \rangle = e \int_{-\infty}^{+\infty} \psi_{n_2 l_2 m_2}^* r \psi_{n_1 l_1 m_1} \neq 0$$

$$(4.31)$$

(1) 方位角部分:

$$x : \int_{0}^{2\pi} \left[e^{i(m_1 - m_2 + 1)\varphi} + e^{i(m_1 - m_2 - 1)\varphi} \right] d\varphi$$
(4.32)

$$y: \int_{0}^{2\pi} \left[e^{i(m_1 - m_2 + 1)\varphi} - e^{i(m_1 - m_2 - 1)\varphi} \right] d\varphi$$
(4.33)

$$z : \int_0^{2\pi} \mathrm{e}^{\mathrm{i}(m_1 - m_2)\varphi} \mathrm{d}\varphi \tag{4.34}$$

磁量子数的选择定则:

$$\Delta m = m_2 - m_1 = 0, \ \pm 1 \tag{4.35}$$

(2) 极角部分:

$$\int_{0}^{\pi} \Theta_{l_{2}m_{2}}^{*} \cos \theta \Theta_{l_{1}m_{1}} \sin \theta d\theta = \int_{0}^{\pi} \Theta_{l_{2}m_{2}}^{*} \frac{(l_{1} - m_{1} + 1)\Theta_{l_{1} + 1,m_{1}} + (l_{1} + m_{1})\Theta_{l_{1} - 1,m_{1}}}{2l_{1} + 1} \sin \theta d\theta \quad (4.36)$$

$$\int_{0}^{\pi} \Theta_{l_{2},m_{2}}^{*} \sin \theta \Theta_{l_{1},m_{1}} \sin \theta d\theta = \int_{0}^{\pi} \Theta_{l_{2},m_{2}}^{*} \frac{\Theta_{l_{1}+1,m_{1}} + \Theta_{l_{1}-1,m_{1}}}{2l_{1}+1} \sin \theta d\theta$$
(4.37)

角量子数的选择定则 (Laporte 选择定则):

$$\Delta l = l_2 - l_1 = \pm 1 \tag{4.38}$$

4.2 碱金属原子

- 1. 碱金属原子能级的粗结构:
 - (1) 对同一主量子数 n, 碱金属能级位置低于氢原子。
 - (2) 对同一主量子数 n, 不同角量子数 l 导致能级分裂。
- 2. 碱金属原子能级分裂的原因:
 - (1) 原子实极化:价电子对原子实有极化作用。
 - (2) 轨道贯穿:价电子有一定概率出现在原子实内。
- 3. 碱金属原子的能级和光谱项:

$$E_{nl} = -\frac{RhcZ^{*2}}{n^2} = -\frac{Rhc}{n^{*2}} = -\frac{Rhc}{(n-\Delta_{nl})^2}$$
(4.39)

$$T_{nl} = -\frac{E_{nl}}{hc} = \frac{R}{(n - \Delta_{nl})^2}$$
(4.40)

4.3 电子的自旋与磁矩

4.3.1 电子轨道的磁矩

1. 电子轨道的磁矩:

$$\boldsymbol{\mu}_l = -\frac{e}{2m_e}\boldsymbol{\ell} = -\gamma\boldsymbol{\ell} \tag{4.41}$$

2. 电子轨道的磁矩的大小:

$$\mu_l = -\sqrt{l(l+1)} \frac{e\hbar}{2m_e} = -\sqrt{l(l+1)}\mu_B$$
(4.42)

3. 电子轨道的磁矩 z 分量的大小:

$$\mu_{lz} = -m\frac{e\hbar}{2m_e} = -m\mu_B \tag{4.43}$$

4.3.2 Stern-Gerlach 实验

1. 作用于原子磁偶极矩上的力:

$$F_z = -\frac{\partial}{\partial z} \left(-\boldsymbol{\mu} \cdot \boldsymbol{B} \right) = \mu_z \frac{\mathrm{d}B}{\mathrm{d}z} \tag{4.44}$$

2. 横向位移:

$$s = \frac{1}{2}at^{2} = \frac{1}{2}\frac{F_{z}}{M_{Ag}}\left(\frac{d}{v}\right)^{2} = \frac{1}{2M_{Ag}}\frac{\mathrm{d}B}{\mathrm{d}z}\left(\frac{d}{v}\right)^{2}\mu_{z}$$
(4.45)

4.3.3 电子自旋的磁矩

- 1. 电子自旋角动量量子数:
- $2s + 1 = 2 \Rightarrow s = \frac{1}{2} \tag{4.46}$

- 2. 电子自旋角动量:
 - (1) 电子自旋角动量的大小:

$$s = \sqrt{s(s+1)}\hbar = \frac{\sqrt{3}}{2}\hbar \tag{4.47}$$

$$s_z = m_s \hbar, \quad m_s = \pm \frac{1}{2} \tag{4.48}$$

- 3. 电子自旋的磁矩:
 - (1) 电子自旋磁矩和自旋角动量的关系:

(2) 电子自旋角动量 z 分量的大小:

$$\boldsymbol{\mu}_s = -\frac{e}{m_e} \boldsymbol{s} \tag{4.49}$$

$$\mu_s = \frac{e}{m_e} s = 2\sqrt{s(s+1)}\mu_B = \sqrt{3}\mu_B \tag{4.50}$$

4. 电子轨道和自旋磁矩的公式:

(2) 电子自旋磁矩的大小:

$$\boldsymbol{\mu}_l = -g_l \frac{e}{2m_e} \boldsymbol{\ell}, \quad g_l = 1 \tag{4.51}$$

$$\boldsymbol{\mu}_s = -g_s \frac{e}{2m_e} \boldsymbol{s}, \quad g_s = 2 \tag{4.52}$$

5. 电子量子态的波函数:

$$\phi_{nlmm_s} = \psi_{nlm}(r,\theta,\varphi)\chi_{m_s}(s_z) \tag{4.53}$$

4.4 碱金属原子光谱的精细结构

4.4.1 原子的总角动量

1. 原子的总角动量:

 $\mathcal{J} = \mathcal{L} + \mathcal{S} \tag{4.54}$

2. 总角动量的大小:

$$\mathcal{J} = \sqrt{J(J+1)}\hbar, \quad J = |L-S|, \dots, L+S \tag{4.55}$$

3. 总角动量 z 分量的大小:

$$\mathcal{J}_z = M_J \hbar, \quad M_J = 0, \pm 1, \dots, \pm J \tag{4.56}$$

4. LS 耦合不改变碱金属原子量子态的数目:

$$N(n, l, m, m_s) = \sum_{l=0}^{n-1} 2(2l+1) = 2n^2$$
(4.57)

$$N(n,l,j,m_j) = \sum_{l=0}^{n-1} \sum_{j=l-1/2}^{l+1/2} (2j+1) = \sum_{l=0}^{n-1} 2(2l+1) = 2n^2$$
(4.58)

4.4.2 自旋-轨道相互作用

1. 原子实在电子处产生的磁感应强度:

$$\boldsymbol{B} = \frac{\mu_0}{4\pi} \frac{Z^* e v}{r^2} \boldsymbol{e}_z = \frac{\mu_0}{4\pi} \frac{Z^* e}{m_e r^3} \boldsymbol{\ell}$$
(4.59)

在原子实静止系中, Thomas 给出右面应乘 1/2:

$$\boldsymbol{B} = \frac{\mu_0}{8\pi} \frac{Z^* e}{m_e r^3} \boldsymbol{\ell} \tag{4.60}$$

2. 自旋-轨道耦合能:

$$\Delta E_{ls} = -\boldsymbol{\mu}_s \cdot \boldsymbol{B} = \frac{\mu_0}{8\pi} \frac{Z^* e^2}{m_e^2 r^3} \boldsymbol{s} \cdot \boldsymbol{\ell}$$
(4.61)

3. 自旋-轨道耦合能在原子定态中的平均值:

$$\langle \boldsymbol{s} \cdot \boldsymbol{\ell} \rangle = \frac{1}{2} \left\langle J^2 - L^2 - S^2 \right\rangle = \frac{1}{2} [j(j+1) - l(l+1) - s(s+1)] \hbar^2$$
(4.62)

$$\left\langle \frac{1}{r^3} \right\rangle = \frac{Z^{*3}}{n^3 l(l+1/2)(l+1)a^3}$$
(4.63)

$$\Delta E_{ls} = \frac{Rhc\alpha^2 Z^{*4}}{2n^3} \frac{j(j+1) - l(l+1) - s(s+1)}{l(l+1/2)(l+1)} \hbar^2$$
(4.64)

4.4.3 碱金属原子光谱的精细结构

1. 碱金属原子总能量:

$$E_{nlj} = E_{nl} + \Delta E_{ls} \tag{4.65}$$

2. 双重能级:

$$j(j+1) - l(l+1) - s(s+1) = \begin{cases} l & j = l + \frac{1}{2} \\ -(l+1) & j = l - \frac{1}{2} \end{cases}, \quad l \neq 0$$
(4.66)

3. 双重能级间隔:

$$\Delta E = \frac{Rhc\alpha^2 Z^{*4}}{n^3 l(l+1)} \tag{4.67}$$

4. 波数间隔:

$$\Delta \tilde{\nu} = \frac{R\alpha^2 Z^{*4}}{n^3 l(l+1)} \tag{4.68}$$

5. 精细能级跃迁的选择定则:

$$\Delta J = 0, \ \pm 1, \quad \Delta l = \pm 1 \tag{4.69}$$

6. 原子能级符号:

图 1: 锂原子能级能级的精细结构及允许跃迁

4.5 氢原子光谱的精细结构

1. Heisenber 的相对论修正:

$$\Delta E_r = -\frac{Rhc\alpha^2 Z^4}{n^4} \left(\frac{n}{l+1/2} - \frac{3}{4}\right)$$
(4.71)

2. Dirac 的自旋-轨道耦合修正:

$$\Delta E_{ls} = \frac{Rhc\alpha^2 Z^4}{2n^3} \frac{j(j+1) - l(l+1) - s(s+1)}{l(l+1/2)(l+1)}$$
(4.72)

3. 氢原子总能量:

$$E_{nls} = E_n + \Delta E_r + \Delta E_{ls} = -\frac{RhcZ^2}{n^2} - \frac{Rhc\alpha^2 Z^4}{n^3} \left(\frac{1}{j+1/2} - \frac{3}{4n}\right)$$
(4.73)

$$= -\frac{m_e c^2}{2} \frac{(Z\alpha)^2}{n^2} \left[1 + \frac{\alpha^2 Z^2}{n^2} \left(\frac{n}{j+1/2} - \frac{3}{4} \right) \right]$$
(4.74)

4. Lamb 移位:

- (1) 真空极化: 交换虚光子产生的正负电子对有屏蔽作用。
- (2) 自能作用: 电子运动产生和吸收虚光子使电子质量增加。

图 2: 氢原子的 Lamb 移位

5 多电子原子

5.1 中心力场近似

1. 第 i 个电子的总势能函数: 原子核势场 + 其他电子的平均中心势场

$$V_i(r_i) = -\frac{Ze^2}{4\pi\varepsilon_0 r_i} + V_{ai}(r_i)$$
(5.1)

2. 原子体系的零级近似 Hamilton 算符:

$$\hat{H}_0 = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m_i} \nabla_i^2 + V_i(r_i) \right)$$
(5.2)

3. 每个电子的定态 Schrodinger 方程:

$$\left[-\frac{\hbar^2}{2m}\nabla V_i^2 + V_i(r_i)\right]\psi_i(r_i,\theta_i,\varphi_i) = \varepsilon_i\psi_i(r_i,\theta_i,\varphi_i), \quad i = 1, 2, \dots, N$$
(5.3)

$$\psi_{n_i l_i m_i}(r_i, \theta_i, \varphi_i) = R_{n_i l_i}(r_i) Y_{l_i m_i}(\theta_i, \varphi_i)$$
(5.4)

4. 第*i*个电子的量子态:

$$\phi_{n_i l_i m_i m_{s_i}} = \psi_{n_i l_i m_i}(r_i, \theta_i, \varphi_i) \chi_{m_{s_i}}(s_z)$$
(5.5)

5.2 Pauli 不相容原理

1. Bose 子: 自旋量子数为整数的粒子。

$$\psi_s(1,2) = \frac{1}{\sqrt{2}} [\psi_\alpha(1)\psi_\beta(2) + \psi_\alpha(2)\psi_\beta(1)]$$
(5.6)

2. Fermi 子: 自旋量子数为半整数的粒子。

$$\psi_a(1,2) = \frac{1}{\sqrt{2}} [\psi_\alpha(1)\psi_\beta(2) - \psi_\alpha(2)\psi_\beta(1)]$$
(5.7)

3. Pauli 不相容原理:任何两个 Fermi 子都不可能具有四个完全相同的量子数 n, l, m, m_s。

5.3 原子的壳层结构

1. 原子的电子组态:

 $n_i l_i^{\mathbb{N}} \tag{5.8}$

- 2. 原子中电子的壳层结构:
 - (1) 主売层:

(2) 支壳层:

$$n = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \\ K \quad L \quad M \quad N \quad O \quad P \quad Q$$
(5.9)

- 3. 各壳层能容纳的电子数:
 - (1) 主売层 (n 相同):

$$N(n,l) = \sum_{l=0}^{n-1} 2l(l+1) = 2n^2$$
(5.11)

(2) 支壳层 (n,l 相同):

 $N(l) = 2(2l+1) \tag{5.12}$

- 5 多电子原子
- 4. 闭合壳层的特点:
 - (1) 闭合支壳层的电子概率密度分布是球对称的。
 - (2) 闭合主壳层和支壳层的电子总角动量和磁矩均为 0。
- 5. 支壳层的能量次序 (经验公式):

$$n + 0.7l \tag{5.13}$$

图 3: 支壳层电子填充的顺序

5.4 多电子原子能级的精细结构

5.4.1 剩余非中心库仑相互作用和自旋—轨道相互作用

1. 多电子原子的剩余非中心库仑相互作用修正:

$$\hat{H}_1 = \sum_{i=1, j=1, i \neq j}^N \frac{1}{2} \frac{e^2}{4\pi\varepsilon_0 r_{ij}} - \sum_{i=1}^N V_{ai}(r_i)$$
(5.14)

2. 电子的自旋-轨道相互作用修正:

$$\hat{H}_2 = \sum_{i=1}^{N} \frac{\mu_0}{8\pi} \frac{Z^* e^2}{m_e^2 r_i^3} \boldsymbol{s}_i \cdot \boldsymbol{\ell}_i$$
(5.15)

5.4.2 *LS* 耦合

1. 原子的总轨道角动量:

$$\mathcal{L} = \ell_1 + \ell_2 \tag{5.16}$$

$$\mathcal{L} = \sqrt{L(L+1)}\hbar^2, \quad L = |l_1 - l_2|, \dots, l_1 + l_2$$
(5.17)

$$\mathcal{L}_z = M_L \hbar, \quad M_L = 0, \pm 1, \dots, \pm L \tag{5.18}$$

2. 原子的总自旋角动量:

$$\boldsymbol{\mathcal{S}} = \boldsymbol{s}_1 + \boldsymbol{s}_2 \tag{5.19}$$

$$S = \sqrt{S(S+1)}\hbar^2, \quad S = |s_1 - s_2|, \dots, s_1 + s_2$$
 (5.20)

$$\mathcal{S}_z = M_S \hbar, \quad M_S = 0, \pm 1, \dots, \pm S \tag{5.21}$$

3. 原子的总角动量:

$$\mathcal{J} = \mathcal{L} + \mathcal{S} \tag{5.22}$$

$$\mathcal{J} = \sqrt{J(J+1)}\hbar, \quad J = |L-S|, \dots, L+S \tag{5.23}$$

$$\mathcal{J}_z = M_J \hbar, \quad M_J = 0, \pm 1, \dots, \pm J \tag{5.24}$$

4. 电子的自旋-轨道耦合修正:

$$\Delta E_{LS} = \frac{1}{2} A(L,S) [J(J+1) - L(L+1) - S(S+1)]\hbar^2$$
(5.25)

5. Lande 间隔定则:

$$E_{J+1} - E_J = A(L,S)(J+1)\hbar^2$$
(5.26)

6. 部分非等效电子组态和等效电子组态 LS 耦合后构成的原子态:

电子组态	原子态			
nsn's	$ {}^{1}S_{0} {}^{3}S_{1}$			
nsn'p	$^{1}P_{1}$ $^{3}P_{0,1,2}$			
nsn'd	$^{1}D_{2}$ $^{3}D_{1,2,3}$			
npn'p	$^{1}S_{0}$ $^{1}P_{1}$ $^{1}D_{2}$ $^{3}P_{0,1,2}$ $^{3}D_{1,2,3}$			
npn'd	$^{1}P_{1}$ $^{1}D_{2}$ $^{1}F_{3}$ $^{3}P_{0,1,2}$ $^{3}D_{1,2,3}$ $^{3}F_{2,3,4}$			
ns^2, np^6	$ {}^{1}S_{0}$			
$np^1, \ np^5$	$^{2}P_{1/2,3/2}$			
np^2, np^4	$1S_0 1D_2 3P_{0,1,2}$			
np^3	$2P_{1/2,1/2}$ $2D_{3/2,5/2}$ $4S_{3/2}$			

7. Hund 定则:给定电子组态,精细结构能级高低的顺序如下决定:

- (1) 首先看 S 值, S 值较大的能级较低。
- (2) 其次看 L 值, L 值较大的能级较低。
- (3) 同一支壳层内,电子数小于等于闭合壳层容纳数的一半时, *J* 值较小的能量较低,称为正序,电子数大于闭合壳层容纳数的一半时, *J* 值较大的能量较低,称为倒序。

Remark. 对原子的一些激发组态, LS 耦合并不严格成立。但是, 可以利用 Hund 定则确定原子基态。

5.4.3 jj 耦合

1. 电子的总角动量:

$$\boldsymbol{j}_i = \boldsymbol{\ell}_i + \boldsymbol{s}_i \tag{5.27}$$

$$j_i = \sqrt{j(j+1)}\hbar^2, \quad j_i = |l_i - s_i|, \dots, l_i + s_i$$
(5.28)

2. 原子的总角动量:

$$\mathcal{J} = \boldsymbol{j}_1 + \boldsymbol{j}_2 \tag{5.29}$$

$$\mathcal{J} = \sqrt{J(J+1)}\hbar^2, \quad J = |j_1 - j_2|, \dots, j_1 + j_2 \tag{5.30}$$

5.5 多电子原子的光谱

5.5.1 电偶极辐射跃迁的选择定则

1. 电子组态的选择定则:

$$\Delta\left(\sum_{i} l_{i}\right) = \pm 1 \tag{5.31}$$

在单电子跃迁情形下,

$$\Delta l = \pm 1 \tag{5.32}$$

2. 原子中相互作用的量子数选择定则:

(1) LS 耦合:

(2) jj 耦合:

$$\begin{cases} \Delta j_{1} = 0 & \text{or } \\ \Delta j_{2} = 0, \ \pm 1 & \Delta j_{2} = 0 \\ \Delta J = 0, \ \pm 1 & (J = 0 \rightarrow J = 0 \ \text{kp}) \\ \Delta M_{J} = 0, \ \pm 1 & \end{cases}$$
(5.34)

Remark. 重原子 \mathcal{LS} 耦合中对 $\Delta S = 0$ 的选择定则并非严格成立。

5.5.2 氦原子的光谱

图 4: 氦原子的能级图

5.6 激光

5.6.1 Einstein 辐射理论

1. 自发辐射:

$$\left(\frac{\mathrm{d}N_2}{\mathrm{d}t}\right)_{\pm\pm} = -A_{21}N_2 \tag{5.35}$$

(1) E₂ 能级上的原子数密度:

$$N_2 = N_{20} \mathrm{e}^{-A_{21}t} = N_{20} \mathrm{e}^{-t/\tau_2} \tag{5.36}$$

(2) 谱线的自然宽度:

$$\Delta \nu = (\Delta E_n + \Delta E_m)/h \ge \frac{1}{4\pi} \left(\frac{1}{\tau_n} + \frac{1}{\tau_m}\right)$$
(5.37)

当 E_m 为基态能级时, $\tau_m \to \infty$

$$\Delta \nu \geqslant \frac{1}{4\pi \tau_n} \tag{5.38}$$

2. 受激辐射:

$$\left(\frac{\mathrm{d}N_2}{\mathrm{d}t}\right)_{\mathcal{Z}_{\mathfrak{A}}^{\mathfrak{A}}} = -\rho(\nu)B_{21}N_2 \tag{5.39}$$

3. 受激吸收:

$$\left(\frac{\mathrm{d}N_1}{\mathrm{d}t}\right)_{\not\in\otimes} = -\rho(\nu)B_{12}N_1 \tag{5.40}$$

- 4. Einstein 关系:
 - (1) 热平衡下能级之间粒子数交换平衡:

$$\left(\frac{\mathrm{d}N_{12}}{\mathrm{d}t}\right)_{\not\in\aa} = \left(\frac{\mathrm{d}N_{21}}{\mathrm{d}t}\right)_{\natural\natural} + \left(\frac{\mathrm{d}N_{21}}{\mathrm{d}t}\right)_{\not\in\aa}$$
(5.41)

(2) 热平衡下两能级上原子数密度之比服从 Boltzmann 分布:

$$\frac{N_2}{N_1} = \frac{g_1}{g_2} \exp\left(-\frac{E_2 - E_1}{k_B T}\right)$$
(5.42)

(3) 解出入射谱能量密度:

$$\rho(\nu) = \frac{A_{21}}{\frac{g_1}{g_2} B_{12} \exp\left(h\nu/k_B T\right) - B_{21}}$$
(5.43)

(4) 在高温极限下: $k_B T \gg E_2 - E_1 = h\nu$

$$\rho(\nu) = \frac{A_{21}}{\left(\frac{g_1}{g_2}B_{12} - B_{21}\right) + B_{12}h\nu/k_BT}$$
(5.44)

(5) A, B 系数的 Einstein 关系:

$$B_{12} = \frac{g_1}{g_2} B_{21}, \quad \frac{A_{21}}{B_{21}} = \frac{8\pi h\nu^3}{c^3}$$
(5.45)

5.6.2 激光原理

- 1. 激光器的结构: 激励能源、激活介质、光学共振腔。
- 2. 激光器的分类:固体激光器、气体激光器、半导体激光器、染料激光器、自由电子激光器。
- 3. 产生激光的必要条件:
 - (1) 受激辐射大于受激吸收: 粒子数反转, $N_2 > N_1$
 - (2) 受激辐射大于自发辐射:

$$B_{21}\rho(\nu) > A_{21} \tag{5.46}$$

(3) 阈值条件:外界激励功率超过损耗阈值

5.7 X 射线

5.7.1 X 射线的产生机制

- 1. X 射线谱:
 - (1) X 射线的连续谱: 韧致辐射
 - (2) X 射线的特征谱: 内壳层电子跃迁
- 2. X 射线连续谱的最小波长:

$$\lambda_{\min} = \frac{c}{\nu} = \frac{hc}{h\nu} = \frac{hc}{eV} = \frac{1.24}{V(kV)} \text{nm}$$
(5.47)

3. Moseley 定律:

$$\widetilde{\nu}_{K_{\alpha}} = R(Z-1)^2 \left(\frac{1}{1^2} - \frac{1}{2^2}\right)$$
(5.48)

$$\widetilde{\nu}_{L_{\alpha}} = R(Z - 7.4)^2 \left(\frac{1}{2^2} - \frac{1}{3^2}\right)$$
(5.49)

4. Auger 效应:

$$E = E_K - E_L - E_M \tag{5.50}$$

5.7.2 Compton 散射

1. 能量动量守恒:

$$\frac{hc}{\lambda_0} + E_0 = \frac{hc}{\lambda} + E \tag{5.51}$$

$$\left(\frac{h}{\lambda_0}\right)^2 + \left(\frac{h}{\lambda}\right)^2 - 2\frac{h^2}{\lambda_0\lambda}\cos\theta = p^2 \tag{5.52}$$

2. Compton 效应:

$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta) = \lambda_c (1 - \cos \theta)$$
(5.53)

5.7.3 X 射线的吸收

1. Lambert-Beer 定律:

$$I = I_0 e^{-\alpha x} = I_0 e^{-\mu \rho x}$$
(5.54)

2. 低能 X 射线的质量吸收系数:

$$\mu = \mu_{\text{#te}} + \mu_{\text{compton}} + \mu_{\text{rayleigh}} \tag{5.55}$$

3. 吸收限: X 射线使一个内壳层电子脱离原子

图 5: 铅的 K、L 吸收限

4. 扩展 X 射线吸收的精细结构: 被打出电子的波被周围原子散射形成向内的波, 与原来向外的波干涉

6.1 原子的磁矩

6.1.1 单电子原子的磁矩

1. 单电子原子的总磁矩:

$$\boldsymbol{\mu}_j = -g_j \frac{e}{2m} \boldsymbol{j} \tag{6.1}$$

$$\mu_j = g_j \sqrt{j(j+1)}\mu_B \tag{6.2}$$

3. 单电子原子总磁矩 z 分量的大小:

$$\mu_{jz} = g_j m_j \mu_B \tag{6.3}$$

4. 单电子原子总磁矩的 g 因子:

$$g_j = 1 + \frac{j(j+1) - l(l+1) + s(s+1)}{2j(j+1)}$$
(6.4)

6.1.2 多电子原子的磁矩

1. 多电子原子的总磁矩:

$$\boldsymbol{\mu}_J = -g_J \frac{e}{2m_e} \boldsymbol{\mathcal{J}} \tag{6.5}$$

2. 多电子原子总磁矩的大小:

$$\mu_J = g_J \sqrt{J(J+1)} \mu_B \tag{6.6}$$

3. 多电子原子总磁矩 z 分量的大小:

$$\mu_{Jz} = g_J M_J \mu_B \tag{6.7}$$

多电子原子总磁矩的 g 因子:
 (1) LS 耦合:

$$g_J = 1 + \frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}$$
(6.8)

$$g_J = g_{j1} \frac{J(J+1) + j_1(j_1+1) - j_2(j_2+1)}{2J(J+1)} + g_{j2} \frac{J(J+1) + j_2(j_2+1) - j_1(j_1+1)}{2J(J+1)}$$
(6.9)

6.2 磁场对原子的作用

6.2.1 Larmor 进动

1. 均匀外磁场中原子总磁矩的角动量定理:

$$\frac{\mathrm{d}\boldsymbol{\mathcal{J}}}{\mathrm{d}t} = \boldsymbol{\mu}_J \times \boldsymbol{B} \tag{6.10}$$

2. 利用式(6.5)改写为:

$$\frac{\mathrm{d}\boldsymbol{\mu}_J}{\mathrm{d}t} = \gamma \boldsymbol{B} \times \boldsymbol{\mu}_J = \boldsymbol{\omega}_L \times \boldsymbol{\mu}_J \tag{6.11}$$

3. 旋磁比:

$$\gamma = g_J \frac{e}{2m_e} \tag{6.12}$$

4. Larmor 进动角频率:

$$\omega_L = \gamma B \tag{6.13}$$

6.2.2 磁场中原子的附加能量

1. Zeeman 能级:

$$\Delta E = -\boldsymbol{\mu}_J \cdot \boldsymbol{B} = -\mu_{Jz} B = M_J g_J \mu_B B \tag{6.14}$$

2. Zeeman 能级间隔:

$$\delta E = g_J \mu_B B = g_J \frac{e\hbar}{2m_e} B = \hbar \omega_L \tag{6.15}$$

6.3 原子光谱的 Zeeman 效应

6.3.1 正常 Zeeman 效应

图 6: 镉原子光谱的 Zeeman 分裂

1. π 光: $\Delta M_J = 0$

$$\nu_{\pi} = \nu_0 \tag{6.16}$$

2. σ 光: $\Delta M_J = \pm 1$

$$\nu_{\sigma} = \nu_0 + \Delta \nu = \nu_0 \pm \frac{\mu_B B}{h} \tag{6.17}$$

6.3.2 反常 Zeeman 效应

图 7: 钠原子黄双线的 Zeeman 分裂

	в,	M,	$M_{j}g_{j}$
² P _{3/2}	$\frac{4}{3}$	$\pm \frac{1}{2}, \pm \frac{3}{2}$	$\pm \frac{2}{3}, \pm \frac{6}{3}$
² P _{1/2}	$\frac{2}{3}$	$\pm \frac{1}{2}$	
· 2 _{S1/2}	2	$\pm \frac{1}{2}$	±1

6.3.3 Paschen-Back 效应

1. 强磁场下原子磁矩的附加能量: 忽略 LS 耦合

图 8: 强磁场下钠原子的 Paschen-Back 效应

6.4 磁共振

6.4.1 电子顺磁共振 (EPR)

1. 自由电子自旋磁矩在外磁场中的 Zeeman 能级:

$$\Delta E = -\boldsymbol{\mu}_s \cdot \boldsymbol{B} = -\mu_{sz}B = \pm \frac{1}{2}g_s\mu_B B \tag{6.19}$$

2. 电子顺磁共振:

$$\delta E = g_s \mu_B B = h\nu \tag{6.20}$$

3. 磁偶极跃迁的选择定则:

$$\Delta m_s = \pm 1 \tag{6.21}$$

4. 顺磁中心的顺磁共振:

$$\delta E = g_J \mu_B B = h\nu \tag{6.22}$$

6.4.2 核磁共振 (NMR)

1. 核磁共振:

$$\delta E = g_I \mu_N B = h\nu \tag{6.23}$$

2. 核磁子:

$$\mu_N = \frac{e\hbar}{2m_p} = 3.152 \times 10^{-8} \text{eV/T}$$
(6.24)

3. 化学移位:

图 9: CH₃CH₂OH 中 H 的 3 条核磁共振谱线

7 原子核物理概论

7.1 原子核的基本性质

7.1.1 原子核的组成

1. β 稳定线:

图 10: 核素图

2. 原子核的结合能:

$$E_X^b = (Zm_p + Nm_n - m_X)c^2 = [ZM_H + (A - Z)m_n - M_X]c^2$$
(7.2)

3. 比结合能:

- 7 原子核物理概论
- 4. Weizsacker 公式(半经验质量公式):

$$E_X^b = a_V A - a_S A^{\frac{2}{3}} - a_C Z^2 A^{-\frac{1}{3}} - a_{Sym} (Z - N)^2 A^{-1} + E_X^{bp}$$
(7.4)

7.1.2 核自旋

1. 质子的自旋磁矩:

$$\boldsymbol{\mu}_{p} = g_{p} \frac{e}{2m_{p}} \boldsymbol{s}_{p}, \quad g_{p} = 5.586 \tag{7.6}$$

2. 中子的自旋磁矩:

$$\boldsymbol{\mu}_n = g_n \frac{e}{2m_p} \boldsymbol{s}_n, \quad g_n = -3.82 \tag{7.7}$$

3. 原子核的自旋磁矩:

$$\boldsymbol{\mu}_{I} = g_{I} \frac{e}{2m_{e}} \boldsymbol{\mathcal{I}}$$
(7.8)

4. 原子核自旋磁矩的大小:

$$\mu_I = g_I \sqrt{I(I+1)} \mu_N \tag{7.9}$$

5. 原子核自旋磁矩 z 分量的大小:

$$\mu_{Iz} = g_I m_I \mu_N \tag{7.10}$$

7.1.3 核磁共振 (NMR)

1. 核磁共振:

2. 化学移位:

$$\delta E = g_I \mu_N B = h\nu \tag{7.11}$$

图 12: CH₃CH₂OH 中 H 的 3 条核磁共振谱线

7.1.4 原子的超精细结构

1. 原子体系的总角动量:

$$\mathcal{F} = \mathcal{I} + \mathcal{J} \tag{7.12}$$

$$\mathcal{F} = \sqrt{F(F+1)}\hbar\tag{7.13}$$

3. 原子核的附加能量:

$$\Delta E = A\mathcal{I} \cdot \mathcal{J} = \frac{A}{2} [F(F+1) - I(I+1) - J(J+1)]\hbar^2$$
(7.14)

7 原子核物理概论

7.2 核衰变

7.2.1 核衰变的一般规律

1. 指数衰变:

$$N = N_0 \mathrm{e}^{-\lambda t} \tag{7.15}$$

2. 半衰期:

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$
 (7.16)

3. 平均寿命:

$$\tau = \frac{1}{N_0} \int_0^{+\infty} t\lambda N dt = \int_0^{+\infty} t\lambda e^{-\lambda t} dt = \frac{1}{\lambda} = \frac{T_{\frac{1}{2}}}{\ln 2}$$
(7.17)

4. 放射性活度:

$$A = -\frac{\mathrm{d}N}{\mathrm{d}t} = \lambda N_0 \mathrm{e}^{-\lambda t} = A_0 \mathrm{e}^{-\lambda t} = \lambda N \tag{7.18}$$

7.2.2 α 衰变

α 衰变:

$${}^{A}_{Z}X \longrightarrow {}^{A-4}_{Z-2}Y + \alpha \tag{7.19}$$

α 衰变能:

$$Q(\alpha) = (m_X - m_Y - m_\alpha)c^2 = [M_X - (M_Y + M_{\rm He})]c^2$$
(7.20)

3. α 衰变能和 α 粒子动能之间的关系:

$$Q(\alpha) = E_Y^k + E_\alpha^k = \left(1 + \frac{m_\alpha}{m_Y}\right) E_\alpha^k \approx \frac{A}{A-4} E_\alpha^k$$
(7.21)

7.2.3 β 衰变

β⁻ 衰变:

$${}^{A}_{Z}X \longrightarrow {}^{A}_{Z+1}Y + e^{-} + \bar{\nu}_{e} \tag{7.22}$$

β⁻ 衰变能:

$$Q(\beta^{-}) = (m_X - m_Y - m_e)c^2 = (M_X - M_Y)c^2$$
(7.23)

3. β⁺ 衰变:

$${}^{A}_{Z}X \longrightarrow {}^{A}_{Z-1}Y + e^{+} + \nu_{e}$$

$$(7.24)$$

4. β⁺ 衰变能:

$$Q(\beta^{+}) = (m_X - m_Y - m_e)c^2 = (M_X - M_Y - 2m_e)c^2$$
(7.25)

5. 电子俘获:

$${}^{A}_{Z}X + e^{-} \longrightarrow^{A}_{Z-1} Y + \nu_{e} \tag{7.26}$$

6. 电子俘获能:

$$Q(i) = (m_X + m_e - m_Y)c^2 - W_i = (M_X - M_Y)c^2 - W_i$$
(7.27)

7.2.4 γ 衰变

1. γ 光子的能量:

$$E_{\gamma} = h\nu = \Delta E - E_R \tag{7.28}$$

2. 内转换电子的能量:

 $E_e = \Delta E - E_i^b - E_R \tag{7.29}$

7 原子核物理概论

7.2.5 Mossbauer 效应

1. 谱线自然宽度:

$$\Delta E_n = \frac{\hbar}{\tau} \tag{7.30}$$

2. 核反冲能:

$$E_R = \frac{p_{\gamma}^2}{2M} = \frac{(\Delta E)^2}{2Mc^2}$$
(7.31)

3. 核从激发态跃迁到基态放出光子能量:

$$E_{\gamma E} = \Delta E - E_R \tag{7.32}$$

4. 核从基态跃迁到激发态吸收光子能量:

$$E_{\gamma X} = \Delta E + E_R \tag{7.33}$$

5. Mossbauer 效应 (无反冲 γ 共振吸收):

$$\Delta E_n \gg E_R \tag{7.34}$$

7.3 核反应、核裂变与核聚变

7.3.1 核反应

1. 核反应:

$$i + T \longrightarrow l + R$$
 (7.35)

2. 反应能:

$$Q = (m_i + m_T - m_l - m_R)c^2 = E_l^k + E_R^k - E_i^k$$
(7.36)

3. Q 方程:

$$Q = \left(1 + \frac{m_l}{m_R}\right) E_l^k - \left(1 - \frac{m_i}{m_R}\right) E_i^k - \frac{2\sqrt{m_i m_l E_i^k E_l^k}}{m_R} \cos\theta \tag{7.37}$$

7.3.2 核裂变

- 1. 自发裂变与诱发裂变
- 2. 链式反应
- 3. 反应堆

7.3.3 核聚变

1. 太阳的热核聚变:碳循环、质子-质子循环

$$4p \longrightarrow \alpha + 2e^+ + 2\nu + 26.7 \text{ MeV}$$
(7.38)

2. 氢弹的热核聚变:

$${}^{6}\mathrm{Li} + n \longrightarrow {}^{3}\mathrm{H} + {}^{4}\mathrm{He} + 4.9 \mathrm{MeV}$$

$$(7.39)$$

$${}^{2}\mathrm{H} + {}^{3}\mathrm{H} \longrightarrow {}^{4}\mathrm{He} + n + 17.6 \mathrm{MeV}$$

$$(7.40)$$

3. 受控热核反应: Lawson 判据

$$E_{in} \leqslant E_{out} \tag{7.41}$$

$$3nk_BT + P_b\tau \leqslant P_R\tau \tag{7.42}$$

8 附录

$$\begin{aligned} \frac{e^2}{4\pi\varepsilon_0} &= 1.44 \text{ fm} \cdot \text{MeV} = 1.44 \text{ nm} \cdot \text{eV} \\ \hbar c &= 197 \text{ fm} \cdot \text{MeV} = 197 \text{ nm} \cdot \text{eV} \\ \hbar c &= 1240 \text{ fm} \cdot \text{MeV} = 1240 \text{ nm} \cdot \text{eV} \\ m_p &= 938 \text{ MeV}/c^2 \\ m_n &= 940 \text{ MeV}/c^2 \\ m_e &= 0.511 \text{ MeV}/c^2 \\ 1 \text{ u} &= 931.5 \text{ MeV}/c^2 = 1.66 \times 10^{-27} \text{ kg} \\ \mu_B &= 0.5788 \times 10^{-4} \text{ eV} \cdot \text{T}^{-1} = 0.927 \times 10^{-23} \text{ J} \cdot \text{T}^{-1} \end{aligned}$$